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Motivation Algorithm

- Neural Machine Translation (NMT) models have made great Input: Monolingual corpora D , and D, initial translation models @ ., and 6, , language
- models LM  and LM beam search size K, learning rates .
success, but many of them heavily depend on large-scale parallel C B =5 ST V1 V2
repea
COTpUS t=t+1.
- Collecting monolingual data 1s always easier than collecting Sample sentence s, and s, from D and D, respectively.
parallel corpus, sce WMT 18’s datasets for example: Sets=s,  >Model update for the game beginning from A.
Generate K sentences s .., ...,s . . using beam search according to
translation model P(.|s; @ ).
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- Can we utilize rich monolingual data to train NMT models? Or 1in Vo, Blr] = 7= Y ke 5109 P(smiails; ©.45)
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other \yqrd, can We.Stlll train NMT models 1f we don’t hav§ | Compute the stochastic gradient of @),
supervision (1.e. paired corpus) or only have limited supervision? K
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Model updates: A A
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Sets =y, >Model update for the game beginning from B.
Go through the algorithm symmetrically.
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| English , German -, German Evaluation
: Hello world | p \ 4 - , Iransiation 1 “ oo l
i Sentence-2 NMT | Sentence-1 = 1 “Hallo welt”
[ | — me=  Sentence-2 , | Sentence-2 Dataset: We use the news and news commentary data from WMT Workshops for
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_______________________________ . e - Dual Learning: ~500,000 monolingual sentences for both languages (only 30,000 are used at
Ahgned the moment of making this poster due to the slow training speed and limited resources)
- Testing: 1,000 parallel German-English sentences
e When we have a reversed translator (German—to-English), we don’t need Note that there are actually millions of monolingual sentences for German and English in WMT’s news

dataset, but we don’t have enough time and computing resources to fully exploit them.

Baseline: Attention + Bi-LSTM NMT models trained with parallel corpus.

paired training data for training English-to-German NMT model:

Training NMT with a Reversed Translator We use the same model architecture in all experiments
. 1 German to English
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e But it’s difficult to have a perfect reversed translator to guide the training ( NMT + Dual 17.78 18.85
as difficult as training our target NMT model) Learning

e But can we train two NMT models with reversed translating directions Conclusion:

together, and let them guide each other during the training? - We got improvements over the baseline on German-to-English translation, but didn’t get clear

improvements on the reversed task. This might because we don’t have enough time to run dual
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Note: Gradients are estimated by sampling the translation models (policy gradient)




