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Motivation: Despite excellent online reinforcement learning algorithm = 2 '
performance of DRL, the knowledge with a tree structure representation. (MAE=Mean Absolute Error, RMSE=Root Mean

To extend the generalization ability, we

, . . Square Error. The results of Flappy Bird are
allow its leaf nodes to contain a linear

remains implicit in neural networks.

Our Work: The contribution of our work omitted due to space limit.)
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includes: LMUT can also approximate a continuous Matching Game Playing Performance
To our best knowledge, the first work that function arbitrarily closely, with typically We evaluate how well a model mimics Q
extends interpretable mimic learning to with manyfewer leaves. functions in DQN by playing the games with
Reinforcement Learning. ) them and computing the Average Reward Per
. . . . action = a,
We define the on-line learning algorithm for . 0} Episode (APER).
LMUT, which is a novel model tree to mimic a V“ We find that among all mimic methods, LMUT
DRL model. achieves the Game Play Performance APER
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Recording observation signals I and actions a
during the training process of Deep
Reinforcement Learning (DRL).

Input them to mature DRL model and obtain
soft output (I, a).

Generates samples for Experience Training

transitions on leaf nodes and prepares for
fitting linear models and splitting nodes.
Node Splitting Phase is where LMUT
scans the leaf nodes and updates their
linear model with Stochastic Gradient

Interpretability

Feature Influence: We evaluate the
influence of a splitting feature by the total
variance reduction of the Q values:
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Dataset (for batch training) , nt (SGD) wir|? C Num
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Repeat until we have training data for the controls a bird to fly between pipes.). features and extract rules for typical examples of

active learner to finish sufficient updates over agent behavior (check our paper for more details).

mimic model (can apply online learning).
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Baseline Methods includes

Classification and Regression Tree Super-pixel Explanation:

The pixels that have large influence in input

does not require recording data during the (CART), M5 Regression-Tree (M5-RT), images are highlighted with red color to

training process of DRL models. This is M5 Model-Tree (M5-MT) and Fast illustrate the key regions.

important because: (1) /\/\al.”ny mimic learners Incremental Model Tree (FIMT). We We find most splits are made on the first image
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large amount of data, which requires much
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