Interpreting Deep Sports Analytics: Valuing Actions and Players in the NHL

Guiliang Liu, Wang Zhu, Oliver Schulte Machine Learning Lab

ECML-PKDD 2018 Presentation

Problem

Understand the Deep Reinforcement Learning (DRL) Model in National Hockey League (NHL)

DRL Model: Previous Work

Liu and Schulte IJCAI 2018

Dataset

- *Game events* and *player actions* for the 2015-2016 NHL season.
- Augment the data with derived features (red lines).

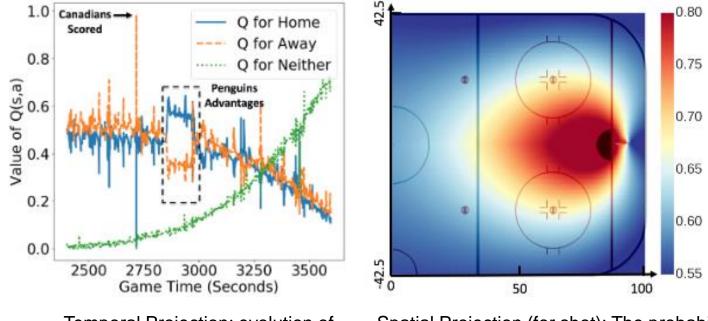
Table 3: Complete Feature List. Values for the feature Manpower are EV=Even Strength, SH=Short Handed, PP=Power Play.

Name	Type	Range
X Coordinate of Puck	Continuous	[-100, 100]
Y Coordinate of Puck	Continuous	[-42.5, 42.5]
Velocity of Puck	Continuous	(-inf, +inf)
Time Remaining	Continuous	[0, 3600]
Score Differential	Discrete	(-inf, +inf)
Manpower	Discrete	$\{EV, SH, PP\}$
Event Duration	Continuous	[0, +inf)
Action Outcome	Discrete	{successful, failure}
Angle between puck and goal	Continuous	[-3.14, 3.14]
Home/Away Team	Discrete	{Home, Away}

- Divide NHL games into **goal-scoring episodes** that
 - Begin at the beginning of the game, or after a goal.
 - Terminate with a goal, or the end of the game.

DRL Model

- Estimate chance that team scores the next goal given current match state and action = $Q_{team}(s, a)$.
- Recurrent network with dynamic trace length LSTM.



Temporal Projection: evolution of scoring probabilities for the next goal

Spatial Projection (for shot): The probability that the home team scores the next goal after taking a shot at a rink location

Goal Impact Metric

• Impact(s_t , a_t) measures the quality of action a_t by how much it changes the expected return of a player's team. impact^{team}(s_t , a_t) = $Q^{team}(s_t, a_t) - Q^{team}(s_{t-1}, a_{t-1})$

Difference of consecutive Q values

• Define **Goal Impact Metric (GIM)** of player *i* by the total impact of a player in entire game season dataset *D*.

$$GIM^{i}(D) = \sum_{s,a} n_{D}^{i}(s,a) \times impact^{team_{i}}(s,a)$$

Goal Impact Metric

- The **Impact** metric passes "eye test".
- Correlates strongly with goals, points, salary, etc. in NHL.
- Consistent between and within seasons.
- All actions including **defensive** and **offensive** actions.

Name	GIM	Assists	Goals	Points	+/-	Age	Team	Salary
Taylor Hall	96.40	39	26	65	-4	24	EDM	\$6,000,000
Joe Pavelski	94.56	40	38	78	25	31	SJS	\$6,000,000
Johnny Gaudreau	94.51	48	30	78	4	22	CGK	\$925,000
Anze Kopitar	94.10	49	25	74	34	28	LAK	\$7,700,000
Erik Karlsson	92.41	66	16	82	-2	25	OTT	\$7,000,000
Patrice Bergeron	92.06	36	32	68	12	30	BOS	\$8,750,000
Mark Scheifele	90.67	32	29	61	16	23	WPG	\$832,500
Sidney Crosby	90.21	49	36	85	19	28	PIT	\$12,000,000
Claude Giroux	89.64	45	22	67	-8	28	\mathbf{PHI}	\$9,000,000
Dustin Byfuglien	89.46	34	19	53	4	31	WPG	\$6,000,000

Table 4: 2015-2016 Top-10 Player Impact Scores

Interpreting the DRL Model

Department name/presenter name

Model

Mimic Learning Framework for **General Model**:

- Mimicking Q functions and impact separately.
- History Window of last 10 observations.
- A Multi-variate Regression Tree (MRT) trained with CART method.

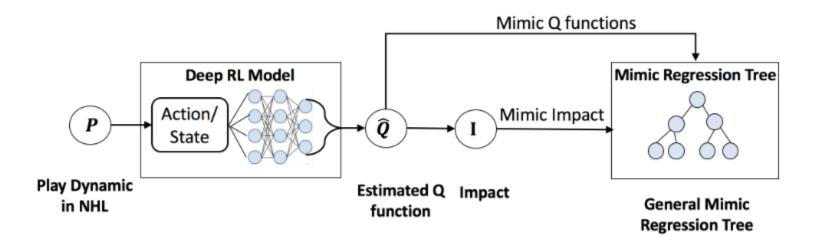


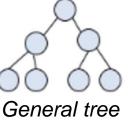
Fig. 3: Interpretable Mimic Learning Framework

Model

Player Specific Model:

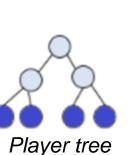
• Inherit the tree structure of the *general model*.

• Use the target player data to prune the *general model*.



prune

initialize



e.g. Sidney Croby

expand

Use the same player data to expand the tree.

Model

Mean Sample Leaf (MSL):

- Control the minimum number of samples at each leaf node.
- Satisfactory performance when **MSL = 20**.

Table 5: Performance of General Mimic Regression Tree (RT) with different Minimum Samples in each Leaf node (MSL). We apply ten-fold cross validation and report the regression result with format: Mean Square Error (Variance)

model	Q_home	Q_away	Q_end	Impact
RT-MSL1	3.35E-04 (1.43E-09)	3.21E-04(1.26E-09)	1.74E-04(2.18E-09)	1.33E-03(5.43E-09)
RT-MSL5	2.59E-04(1.07E-09)	2.51E-04(0.89E-09)	1.35E-04(1.87E-10)	9.84E-04(2.72E-09)
RT-MSL10	2.38E-04(1.02E-09)	2.30E-04(0.89E-09)	1.25E-04(2.30E-10)	8.66E-04(2.17E-09)
RT-MSL20	2.31E-04(0.92E-09)	2.22E-04(0.82E-09)	1.23E-04(2.05E-10)	7.92E-04(1.45E-09)
RT-MSL30	2.35E-04(0.98E-09)	2.27E-04(0.85E-09)	1.27E-04(2.32E-10)	7.67E-04(1.16E-09)
RT-MSL40	2.39E-04(0.96E-09)	2.30E-04(0.85E-09)	1.29E-04(2.19E-10)	7.58E-04(1.10E-09)

Feature Importance

Rank feature by average variance reduction:

- Find the top 10 important features using *general model*.
- The impact function recognizes **shooting**, **successful** actions.
- History Window is necessary.

Table 6: Top 10 features for Q values (left) and Impact (right). The notation T - n : f indicates that a feature occurs n time steps before the current time.

Feature Name	Frequency	Importance	Feature Name	Frequency	Importance
T: Time Remaining	12,524	0.817431	T: Goal	1	0.160595
T-1: Manpower	93	0.070196	T: Shot-on-Goal	1	0.099482
T-1: Team Identifier	57	0.020504	T: X Coordinate	7,142	0.077410
T: Manpower	346	0.017306	T: X Velocity	8,087	0.041903
T: Shot	31	0.011159	T-1: X Coordinate	3,591	0.041847
T: Score Differential	3,229	0.009568	T: Angle to Goal	7,525	0.041607
T: X Coordinate	11,797	0.006968	T: Time Remaining	8,669	0.036289
T-1: X Coordinate	3,406	0.006963	T: Duration	7,411	0.028831
T-2: Manpower	82	0.005045	T: Home/Away Team	378	0.027177
T: Home/Away Team	135	0.003755	T: Y Coordinate	6,890	0.027597

Partial Dependence

Partial Dependence plot:

- Use general model to interpret Q functions and impact.
- Select Time Remaining, X Coordinate and X Velocity to visualize.

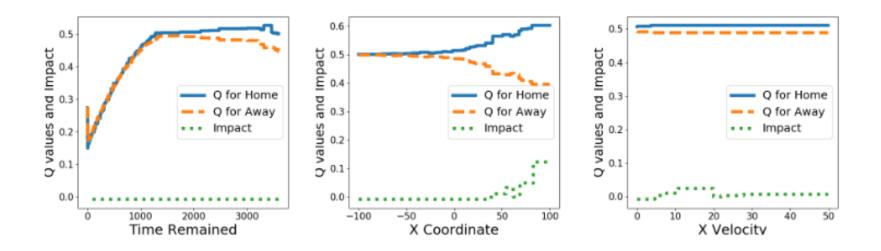


Fig. 4: Partial Dependence Plot for Time Remaining (left), X Coordinate (middle) and X Velocity (right)

Exceptional Players

Find the most unusual players:

• Use *player specific model* to compare the whole dataset (general data) and player specific data.

1	•			
Player	Q_home	Q_away	Q_end	Impact
Taylor Hall	1.80E-04	2.49E-04	2.28E-04	6.66E-05
Joe Pavelski	4.64E-04	2.90E-04	3.04E-04	1.09E-04
Johnny Gaudreau	2.12E-04	1.96E-04	1.43E-04	$6.77 \text{E}{-}05$
Anze Kopitar	2.58E-04	2.00E-04	2.43E-04	8.28E-05
Erik Karlsson	2.97E-04	1.89E-04	1.86E-04	2.00E-04

Table 7: Exceptional Players Based on Tree Discretization

- Joe Pavelski scored the most in the 2015-2016 game season.
- Erik Karlsson had the most points (goal+assists).

Thank You!

For more information: Poster: #xxx Homepage: <u>http://www.galenliu.com/</u>

Exceptional Players

How to find the most unusual player:

- Focus on top players
- For each *player specific model*:
 - For each leaf in the tree
 - There is an original value (e.g. I_l^P)
 - Learn a value based on the whole dataset (I_l)
 - Weight by the percentage of cases that get to the leaf (n_l/n_D)
 - Sum over squared differences $n_l/n_D (I_l^{\bar{P}} I_l)^2$

10010 11 11100p010.	101 1 100 01		1 1100 210	or our during the
Player	Q_home	Q_away	Q_end	Impact
Taylor Hall	1.80E-04	2.49E-04	2.28E-04	6.66E-05
Joe Pavelski	4.64E-04	2.90E-04	3.04E-04	1.09E-04
Johnny Gaudreau	2.12E-04	1.96E-04	1.43E-04	$6.77 \text{E}{-}05$
Anze Kopitar	2.58E-04	2.00E-04	2.43E-04	8.28E-05
Erik Karlsson	2.97E-04	1.89E-04	1.86E-04	2.00E-04

Table 7: Exceptional Players Based on Tree Discretization